Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player


 

 Services


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


filling
 
Tooth preparation

Tooth preparation is usually required before placing a dental restoration. This process involves cutting the tooth usually with a dental drill to make space for the planned restoration, remove any dental decay and structurally unsound tooth. If permanent restoration can not be carried out after tooth preparation, temporary restoration is done.
A tooth preparation is the finished product of a tooth's structure prior to restoration with a dental restorative material, such as gold, amalgam, composite, porcelain or any number of other materials.
In preparing a tooth for a restoration, a number of considerations will come into play to determine the type and extent of the preparation. The most important factor to consider is decay. For the most part, the extent of the decay will define the extent of the preparation, and in turn, the subsequent method and appropriate materials for restoration.

Another consideration is unsupported tooth structure. In the photo , unsupported enamel can be seen where the underlying dentin was removed because of infiltrative decay. When preparing the tooth to receive a restoration, unsupported enamel is removed to allow for a more predictable restoration. While enamel is the hardest substance in the human body, it is particularly brittle, and unsupported enamel fractures easily.

Direct restorations

This technique involves placing a soft or malleable filling into the prepared tooth and building up the tooth before the material sets hard. The advantage of direct restorations is that they usually set quickly and can be placed by one operator. Since the material is required to set while in contact with the tooth, limited energy can be passed to the tooth from the setting process without damaging it. Where strength is required, especially as the fillings become larger, indirect restorations may be the best choice. It can be done in one visit with a dentist.

Indirect restorations

This technique of fabricating the restoration outside of the mouth using the dental impressions of the prepared tooth. Common indirect restorations include inlays and onlays, crowns, bridges, and veneers. Usually a dental technician fabricates the indirect restoration from records the dentist has provided of the prepared tooth. The finished restoration is usually bonded permanently with a dental cement. It is often done in two separate visits to dentist. Common indirect restorations are done using gold or ceramics.
While the indirect restoration is being prepared, a provisory/temporary restoration sometimes is used to cover the prepared part of the tooth, which can help maintain the surrounding dental tissues.
Removable dental prostheses (mainly dentures) are considered by some to be a form of indirect dental restoration, as they are made to replace missing teeth. There are numerous types of precision attachments (also known as combined restorations) to aid removable prosthetic attachment to teeth, including magnets, clips, hooks and implants which could be seen as a form of dental restoration.
The CEREC method is a chairside CAD/CAM restorative procedure. An optical impression of the prepared tooth is taken using a camera. Next, the specific software takes the digital picture and converts it into a 3D virtual model on the computer screen. A ceramic block that matches the tooth shade is placed in the milling machine. An all-ceramic, tooth-colored restoration is finished and ready to bond in place.

Another fabrication method is to import STL and native dental CAD files into CAD/CAM software products that guide the user through the manufacturing process. The software can select the tools, machining sequences and cutting conditions optimized for particular types of materials, such as titanium and zirconium, and for particular prosthesis, such as copings and bridges. In some cases, the intricate nature of some implants requires the use of 5-axis machining methods to reach every part of the job .

Materials used in dental restorations
Amalgam

>Silver amalgam

 

Amalgam is widely used for direct fillings, and done in single appointment .

 

>Direct Gold

 

Gold :-Although rarely used, due to expense, specialized training requirements and bad esthetic .              

gold foil can be used for direct dental restorations.

Cast gold is used for indirect restorations.

Tooth colored restoration

Dental compos ites are also called white fillings, used in direct fillings. Crowns and inlays can also be made in the laboratory from dental composites. These materials are similar to those used in direct fillings and are tooth coloured. Their strength and durability is not as high as porcelain or metal restorations and they are more prone to wear and discolouration.


After tooth preparation, a thin glue or bonding material layer is applied. Composites are then filled layer by layer and photo-polymerising each using light. At the end the surface will be shaped and polished.


Glass ionone cement
A glass ionomer cement (GIC) is one of a class of materials commonly used in dentistry as filling materials and luting cements. These materials are based on the reaction of silicate glass powder and polyalkeonic acid. These tooth-coloured materials were introduced in 1972 for use as restorative materials for anterior teeth (particularly for eroded areas, Class III and V cavities).
As they bond chemically to dental hard tissues and release fluoride for a relatively long period modern day applications of GICs have expanded. The desirable properties of glass ionomer cements make them useful materials in the restoration of carious lesions in low-stress areas such as smooth-surface and small anterior proximal cavities in primary teeth. Results from clinical studies also support the use of conventional glass ionomer restorations in primary molars. They need not be put in layer by layer, like in composite fillings.


Porcelain (ceramics)
Full-porcelain (ceramic) dental materials include porcelain, ceramic or glass like fillings and crowns  . They are used as in-lays, onlays, crowns and aesthetic veneers. A veneer is a very thin shell of porcelain that can replace or cover part of the enamel of the tooth. Full-porcelain restorations are particularly desirable because their color and translucency mimic natural tooth enamel.
Another type is known as porcelain-fused-to-metal, which is used to provide strength to a crown or bridge. These restorations are very strong, durable and resistant to wear, because the combination of porcelain and metal creates a stronger restoration than porcelain used alone.


One of the advantages of computerized dentistry (CAD/CAM technologies) is that it enabled the application of zirconium-oxide (ZrO2). The introduction of this material in restorative and prosthetic dentistry is most likely the decisive step towards the use of full ceramics without limitation. With the exception of zirconium-oxide, existing ceramics systems lack reliable potential for the various indications for bridges without size limitations. Zirconium-oxide with its high strength and comparatively higher fracture toughness seems to buck this trend. With a three-point bending strength exceeding nine hundred megapascals, zirconium-oxide can be used in virtually every full ceramic prosthetic solution, including bridges, implant supra structures and root dowel pins.

 

Previous attempts to extend its application to dentistry were thwarted by the fact that this material could not be processed using traditional methods used in dentistry. The arrival of computerized dentistry enables the economically prudent use of zirconium-oxide in such elements as base structures such as copings and bridges and implant supra structures. Special requirements apply to dental materials implanted for longer than a period of thirty days. Several technical requirements include high strength, corrosion resistance and defect-free producibility at a reasonable price.

pen cure

 

you Are Visitor Number